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interlayer friction thus reducing the liquid velocity. Moreover, the fact that points mo- 
ving with opposite velocities are near each other, leads to a further reduction in the con- 

tribution of the motion of the liquid towards the moment of impulse of the solid-fluid 

system. Therefore the result is PXs < P,,. 
The above discussion appears to be qualitatively applicable to more complex confi- 

gurations of the closed tube. Two types of flow can exist in any such tube, one extend- 

ing t~oughout the whole tube, and the other through a part of it. When a close vortex 
extending through the whole tube is present, then the moment l, is larger than in its 

absence. For a plane tube the moment, and therefore the value of Pil is largest when 

the angular acceleration is perpendicular to the plane of the tube. 

The moment of forces acted upon the top by the liquid has a retarding influence on 
the angular acceleration, Therefore the liquid contained in the cavity of the top exerts 

a stabilizing influence 111 41. In the case when the diagonal com~nents of P,, are 
different from each other, an optimal orientation of the cavity exists for which the sta- 

bilization time is shortest [4]. For a torus this situation arises when the principal axes 

with the largest and smallest moment of inertia are parallel to the plane of the torus. 
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We investigate the relationships at the discontinuities in magnetizable noncon- 

ducting media. The magnetic permeability is assumed to be an arbitrary func- 
tion of the magnetic field and, generally speaking, different on each side of the 
discontinuity. We note that the contribution of the terms connected with the 
magneti~bili~ towards the relations at the discontinue is substantial also in 

the case when the values of permeability at both sides of the discontinuity are 
constant and different from each other. We show that the behavior of the adia- 
batic shock curve depends substantially on the sign of the difference in the values 
of the permeability ahead and behind the discontinuity, 
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The monograph [I) gives general expressions for the relations at the discunti- 
nuities in the mechanics of ~ntin~um, taking into account the electromagnetic 

field and the magnetization and polarization effects. The relations of the dis- 
continuities are given in [2, 31 for the ferrohydrodynamic and electrohydrodyna- 

mic approximations. 

In the case when the permeability f~ depends only on the magnetic field, p = p (H}, 

in such a manner that, generally speaking, the function ps behind the dis~ntin~~ is 
different from the function ur ahead the discontinuity. The system of relations at the 
discontinuity has the form I> 

{PU,} = 0, IN> + m2 14 + .$a -L{~pH~H}=-f$-{$-}, m--pun (1) 

0 

B =#I, PO= f@, T) 

m + +{wo} =O, {II,} = 0, 
i > 

{B,} = 0, ((a) -a2---1) 

where po and wo denote the pressure and enthalpy in the absence of a magnetic field, p 
is the density, v is the specific volume, T is the temperature, uT and tin are the tan- 

gential and normal components of the velocity of the medium in a coordinate system in 
which the discontinuity is at rest. The subscripts 1 and 2 denote the parameters of the 

medium ahead and behind the discontinuity, respectively. 
From the fourth and eighth equation of (1) it follows that the tangential velocity com- 

ponent does not undergo any discontinuity. The eighth and ninth equations of (1) give 
the magnetic field behind the dis~ntin~~ in terms of the specified field ahead the dis- 
continue, In a particular case when the values of permeability ahead and behind the 
discontinuity are constant but different from each other, we have H,, = H,, and Hn2 =~ 

(PI 1 F2W,1. We shall call the shock wave the demagnetization (magnetization) wave if 
Cc, < u~(us > pi). We note that the magnetic field behind the discontinuity can be deter- 

mined independently of the other parameters, and in the case of an arbitrary dependence 
of the permeability on the magnetic field, the density and the temperature, the permea- 

bility becomes equal to unity behind the discontinuity when the latter is the demagneti- 

zation wave. Morover, we then have 

r H +s= H,, and H,,s= P&U TI, Hi)H,,. 
From the second, seventh and 

eighth equations of (1) follows : 

(2) 
uigq, - ZOO1 = ++POZ - par + $J) 

ma = Pm - PO1 + ‘I 
v1- va 

-__-__----- - - __.__ 

Fig. 1 

The quantity q is a known function 
of the parameters ahead the discon- 
tin&y. Its sign depends on the form 
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of the function p (HI, e. g. in the case when the shock wave separates two different 
media each of which is characterized by its constant permeability, i.e. pr = con&, and 

p2 = const, we have p = (pLz - pl) IHTr 4- (p:! I pr)Hi,] I &c, so that for the magnetiza- 
tion waves q > 0, while for the demagnetization waves q < 0. In the case when p (H) 
is a step function with a discontinuity at tbe point H = N*, we have 

and q > 0 for I+ > pLlr as well as for p2 < plS 

We shall assume that the medium is described by the equation cf state for an ideal 
gas and, that the enthalpy is given by wo = ‘yp,,u / (y - 1). The equation (2) yields the 
following expression for the adiabatic shock curve in the pv-plane : 

(3) 

For the media with the permeability independent of temperature, the entropy of the 

medium becomes identical with the entropy s0 in the absence of the magnetic field. 

It can be shown that for the adiabatic shock curve in magnetizable nonconducting media 

the relations dm2 f dP2 = 0, ds, I dpz = 0 and ~2 = c2 (where ca is the speed of sound in 

the absence of a magnetic field), hold simultaneo~ly just as in the conventional gas dy- 

namics. 
Let us construct an adiabatic shock curve for the case g > 0 (Fig. 1). We draw the 

Hugoniot curve through the point 01 (~1, pJ . The curve for magnetizable media des- 

cribed by Eq. (3) is a hyperbola with the asymptotes 

z;a 1 pz I -_- -=-- 
31 x ’ PI ?a-+ 

which passes through the point A (vl, p1 + q (y - 1)) and is situated above the curve 

I’. From the second equation of (2) it follows that the tangent of the angle of inclination 
of the secant to the curve taken with the opposite sign and drawn from the point 0 (vi, 

PI - q) is equal to the square of the mass flux density. At the point D of contact of 
this secant to the curve, the normal component of velocity of the medium behind the 

discontinuity unz ls equal to the speed of sound c2, since at this point dm2 I dp, = 0. 
We shall show that U~Z < C2 above the point D and unZ > c2 below it. Let us find 

the sign of the derivative 

Near the point D the expansions m2 = cz8 I v22 + o (uz) and dma i dp, = o (v2) dp, I dv, 

hold, and 
d(u:s - c2J I dv, = YP~ - (17~2 + o(v2))@2 I dv2 + o(v2) 

In the case when dp, I du, < 0 the derivative d(u& - c2s)/ dp, is positive near the 
point D , consequently the velocity un2 < C, for VZ < Pn and U,Z > CZ for V2 > vn’ 
These ineq~lities hold at all points of the curve when v2 < ~1. 

The segment AB of the curve has no physical meaning since on it we have m8 < 0. 

When p1 - q f 0 I the right -hand side branch of the adiabatic curve descends below the 
axis P = 0 and the pressure pz becomes negative, so that this part of the curve also has 
no physical meaning. On the segment AD1 the velocity unl > cl since on this segment 
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the angle of inclination of the secant projected from the point 0 (q, p1 - q) to the 
curve is always greater than the angle of inclination of the tangent to the Hugoniot curve 
at the point 0,. 

Thus, on the segment DD1 we have 

+2 < c2r Unl > cl , on DA the %a > CZ, 

lint > CI on B& the ana > c,, unl < cz t 

t 

Fig, 2 Fig. 3 

and on DaD, the % > cz, unl < cI. For the shock waves in magnetizable nonconduct- 
ing media the conditions of evolutionarity are satisfied only by the branch DD1 unless 

supplementary equations not derivable from the laws of conservation are available at 

the surface of discontinuity. 
Let us consider the case 11< 0. The derivative 

dpt 27 lb+ q fr - 1.11 -=- 
dvz bl (r - 4)s [XVZ - VI)8 

can either be positive or negative, and this will significantly affect the form of the cor- 

responding curves pt(ua) . When PI = - q(y - 4) / 2, the adiabatic curve degenerates 
into a straight line p2 = - pr- For the values of q satisfying the inequality 

+1-k 4 (Y - 1) > 0 

the curve has the form shown in Fig. 2. The curve &v,) 4s situated below the Hugoniot 

curve. Beginning from the point B,, the pressure p2 is negative, while at pl< - (I (JJ - 4 ) 

the whole branch BD, is situated below the axis p = 0 and has no physical meaning. 
The secant projected from the point 0 (Q, p1 - p) again yields. as in the case 4 > 0, 
the mass flux across the surface of the discontinuity. 

At the points C and D of intersection of the straight line passing through the point 
0 and parallel to the tangent to the Hugoniot curve at the point 01, the normal velo- 
city ahead the discontinuity u,~ is equal to the sped of sound cl. Above the point C 

we have u, > e,, and below it we have unr < cl. At the point C the following rela- 

tions hold : 

From this it follows that u,, < c2 and since on this segment dm2 I dp2 is never zero, 

the above inequality holds for the whole branch AC,. Similarly, on the segment BDt 
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we have un2 > ea. For the values of q satisfying the inequality (4) the conditions of 

evolutionarity hold on the segment CC, of the adiabatic curve. When the inequality 

2P, + q(v - 1) < 0 holds, the function pz(vz) increases monotonously from - 00 at 

v, = ur I X to Pa = - (P1 - q) / x when v, tends to 00 (Fig. 3). Thus, the whole of the 

curve p2(vz) lies below the axis p = 0 and has no physical meaning. 
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We investigate a longitudinal flow past an axisymmetric body in the case when 

a part of the streamlined surface is not known but instead, the distribution of the 

tangential velocities is specified. The flow is assumed irrotational, and the fluid 
ideal and incompressible. At the stagnation points the body surface may behave 
as a sphere, a cone or an edge. An integro-differential equation for determining 
the form of the free surface is derived for any arbitrarily specified velocity. In 

the case of a cavitation flow the method of the ~determined coefficients is used 
to solve the above equation. An analytic and graphical dependence of the cavi- 
tation number on the apex angle of cone and its relative length, is given. The 
theory is satisfactorily confirmed by experimental data. 

1, Btrtrmsnt of thr problem, Let a longitudinal irrotational stream of an 
ideal incompressible fluid flow past a slender axisymmetric body. The surface of this 
body is described by the equation p = R (z) , where 

! 
p- (2) --l<z<b 

R(z) = r(z) 

I 

as given by the condition zt2 =- vf (z), b<z<c (1.1) 
r.i. (2) c<z<i 

The segment (8, c) which is defined by the distribution of tangential velocities U_ (2) is 
a free boundary, while the segments t-i, bf and (e, 1) are parts of the rigid boundary, 

The problem is reduced to finding the equation of the free boundary r (2). We assume 


